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Abstract

Constructing Anosov actions on nilmanifolds: starting with the case of
tori, we explore ways to classify Anosov automorphisms and groups acting
by Anosov automorphisms. Starting with the construction of examples,
we study how all of these symmetries of a given algebraic structure, a
nilmanifold, can be classified.
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1 Introduction

Let a surface group be the fundamental group of a genus g surface. Surface
groups are fairly well-understood from a group theory perspective, but their
dynamical properties are more mysterious. It is known that when Γ is a surface
group, linear representations ρ from Γ to the general linear group of n× n real
matrices GL(n,R) are quite flexible [Bro18]. However, if we consider represen-
tations σ from Γ to the special linear group of n×n integer matrices SL(n,Z), it
is not known whether such σ are flexible. One may also ask analogous questions
for Γ = SL(2,Z), and again the representation ρ is known to be flexible while σ
remains elusive. The group SL(2,Z) is natural to consider in conjunction with
surface groups because all surface groups are finite index in SL(2,Z) by way of
the chain of embeddings

surface group → von Dyck group → PSL(2,Z) → SL(2,Z).

These embeddings admit a natural hyperbolic geometry interpretation, which
we elaborate on later in the report. Also, since SL(2,Z) embeds into SL(n,Z),
we may ask flexibility questions about SL(n,Z).

The group SL(n,Z) can be considered to act on the n-dimensional torus
Tn := Rn/Zn by matrix multiplication. The action of SL(2,Z) on T2 is flexible,
while the action of SL(3,Z) on T3 is rigid. We may also consider subgroups of
SL(n,Z) acting on Tn. In particular, we are interested in subgroups that contain
an Anosov diffeomorphism, which is a map with nice dynamical properties, such
as structural stability (a property akin to flexibility). Anosov diffeomorphisms
are also interesting in that they form a class of dynamical systems that exhibit
chaotic behavior, such as expansivity and sensitivity to initial conditions.

The main result in our report is as follows.

Theorem 1. There is an explicit faithful action on the 3-dimensional torus T3

by surface groups containing an Anosov element.

Given this result, it is natural to consider whether we can extend our con-
struction to a more general class of spaces to which the 3-torus belongs. The
right generalization comes from the observation that the 3-torus is the quotient
of the simply-connected nilpotent Lie group R3 by the integer lattice Z3. In
general, the quotient of a simply-connected nilpotent Lie group N by a lattice
in N is called a (compact) nilmanifold. Following our construction of an embed-
ding π1(Σ2) ↪→ SL(3,Z), we use this construction to define a faithful action of
π1(Σ2) on the free 2-step nilpotent Lie group N on three generators, with the
eventual goal of constructing an Anosov action of π1(Σ2) on a nilmanifold with
covering Lie group N .

1.1 Outline of Report

The report is organized as follows. We begin with a review of differential topol-
ogy and geometry in Section 2, followed by an introduction to hyperbolic ge-
ometry and surface groups in Section 3, including the statement of Poincare’s
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theorem and the definition of triangle groups which feature prominently in Sec-
tion 6.1. We also discuss in this section a way to embed π1(Σn) in π1(Σ2) for
n ≥ 2, so that constructing actions by surface groups of genus n ≥ 2 reduces to
constructing actions by the surface group of genus 2.

In Section 4, we introduce Anosov diffeomorphisms and discuss some inter-
esting dynamical properties that they satisfy, such as C1-structural stability.
We also discuss notions of structural stability more generally for actions of
groups other than Z, and show by way of an example by Hurder in [Hur92]
the existence of Anosov actions that are not structurally stable in the sense of
topological deformation rigidity.

In Section 5, we provide a brief review of Lie theory with emphasis on nilpo-
tency, then introduce the notion of nilmanifolds. Next, we construct a nilman-
ifold that admits an Anosov diffeomorphism, featuring the Heisenberg group.
This section will serve as background for Section 6.4.

Finally, in Section 6, we state our results. First, we will prove the main
result, namely Theorem 1. We do so by embedding the surface group of genus
2 into a particular triangle group, apply a result in 4, then we generalize this
to any genus g ≥ 2. Second, we see if we can construct a PSL(2,Z) action
on T3, and determine whether it is topologically deformation rigid. Finally, we
explore whether we can construct an Anosov surface group action on a non-toral
nilmanifold.

1.2 Acknowledgements

We thank Aaron Brown, Homin Lee, Solly Coles, and Christian Gorski for
mentoring us, Keith Burns and Aaron Peterson for organizing this program,
and the Northwestern University REU for making the research possible. This
work was done with the support of RTG grant 2136217 from the National Science
Foundation.
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2 Differential geometry

2.1 Smooth manifolds

We now review some differential topology, mainly stating definitions as well as
some facts without proof; for more details, see [Lee03], from which many of
these definitions and facts have been taken either directly or with modification.
Given two spaces X and Y , we denote by X ⊃→ Y a partial mapping from X
to Y defined on an open subset of X. Given a space M , a chart on M is an
object consisting of the following data:

1) a nonnegative integer n, called the dimension;

2) a map φ : M ⊃→ Rn, called the coordinate map, whose domain of defini-
tion is called the coordinate domain,

such that imφ ⊆ Rn is open and φ is a homeomorphism from its domain of
definition to its image. We denote a chart on M via the notation (n,U, φ),
where n is the dimension, U is the coordinate domain, and φ is the coordinate
map. Note that we can recover both n and U from φ itself, with n being the
dimension of the codomain of φ and U the domain of definition of φ; thus, we
often omit one or both pieces of information when naming a chart.

Fix r ∈ N ∪ {∞}. Two charts φ and ψ on M are said to be Cr-compatible
(or smoothly compatible when r = ∞) if φ◦ψ−1 and ψ ◦φ−1 are Cr in the usual
sense. An atlas on M is an object consisting of the following data:

1) a nonnegative integer n, called the dimension;

2) a set A of n-dimensional charts on M ,

such that the coordinate domains of the charts in A cover M . The atlas is said
to be Cr (or smooth when r = ∞) if the charts in A are pairwise Cr-compatible.
A Cr-manifold is an object consisting of the following data:

1) a second countable Hausdorff space M .

2) a nonnegative integer n = dimM , called the dimension.

3) a maximal n-dimensional Cr-atlas on M called the Cr-structure of M (or
smooth structure when r = ∞), whose members are called the Cr-charts
of M (or smooth charts when r = ∞).

A C∞-manifold is more often called a smooth manifold—from here on out, we
restrict our attention to smooth manifolds.

Given a topological space M and an n-dimensional smooth atlas A on M ,
there is a unique extension of A to a maximal n-dimensional smooth atlas A on
M , called the smooth structure onM determined by A—this is just the collection
of all n-dimensional charts onM that are smoothly compatible with every chart
in A. This useful fact allows us to define smooth structures on topological spaces
without having to specify every chart; for instance, the identity map on Rn
constitutes a one-element smooth atlas on Rn and thereby determines a smooth
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structure on Rn, called the standard smooth structure on Rn. If M is a smooth
manifold, an open submanifold of M is an open subset U ⊆ M endowed with
the smooth structure on U determined by the set of all smooth charts of M
whose coordinate domains are contained in U .

For each r ∈ N ∪ {∞}, a set-map f : M → N between smooth manifolds
is said to be Cr (or smooth when r = ∞) if, roughly speaking, f is locally Cr.
More precisely, we require that for each p ∈M , there exist smooth charts (U,φ)
and (V, ψ) at p and f(p), respectively, so that f(U) ⊆ V and ψ ◦ f ◦φ−1 (called
a coordinate representative of f) is Cr in the usual sense. The identity maps
are Cr, and the composite of any two Cr maps is Cr. That is to say, smooth
manifolds together with Cr maps form a category, called the Cr-category of
smooth manifolds. The isomorphisms in this category (i.e., the Cr maps with
Cr inverse) are called Cr diffeomorphisms. Note that every Ck map is Cr

whenever 0 ≤ r ≤ k ≤ ∞ and that the C0 maps are precisely the continuous
maps. In particular, Cr diffeomorphisms are also homeomorphisms.

If M and N are smooth manifolds, we denote by Diffr(M,N) the set of all
Cr diffeomorphisms from M to N . In general, a Cr diffeomorphism cannot be
interpreted as a relabelling of smooth manifolds; however, this interpretation
becomes valid in the case r = ∞.

Suppose M is an n-dimensional smooth manifold. Recall that to each point
p ∈M , we associate an n-dimensional real vector space TpM , called the tangent
space to M at p. Intuitively, the tangent space to M at a point can be thought
of as the best linear approximation of M near that point. Furthermore, to
each smooth map f :M → N and point p ∈M , we associate a real linear map
dfp : TpM → Tf(p)N , called the differential of f at p—this notion generalizes the
notion of derivatives of smooth maps between Euclidean spaces. The differential
operator preserves function composition and identity maps; in the category-
theoretic lingo, we say that it defines a functor from the category of pointed
smooth manifolds (with pointed smooth maps as morphisms) to the category of
real vector spaces.

2.2 Riemannian manifolds

A Riemannian metric onM is a map that associates to each point p ∈M a real
inner product ⟨·, ·⟩p on TpM . We require that this association be ‘smooth,’ which
should, for now, be thought of as a technical condition. A Riemannian manifold
is a smooth manifold equipped with a Riemannian metric. An isometry between
two Riemannian manifolds is an inner product-preserving diffeomorphism, or, in
other words, a relabelling of the underlying sets that preserves the Riemannian
manifold structure. If M is a Riemannian manifold, we denote by Isom(M) the
set of all self-isometries of M .

Every connected Riemannian manifold M comes equipped with a canonical
distance function that turns it into a metric space. Given two points p, q ∈M ,
a smooth curve segment in M from p to q is a smooth map γ : [a, b] → M for
some real numbers a < b, where γ(a) = p and γ(b) = q. We define the length of
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γ by the formula

length γ =

∫ b

a

∥γ′(t)∥γ(t) dt.

The distance d(p, q) between two points p and q in M is then defined to be the
greatest lower bound of all lengths of smooth curve segments from p to q.

We conclude this section with a discussion of geodesics, which is often dis-
cussed in the context of Riemannian geometry but may be defined in a more
general setting. Suppose M is a metric space. Loosely speaking, a geodesic in
M is a locally distance-minimizing curve inM . Formally, we define a geodesic in
M to be a local isometry (in the usual sense for metric spaces) from an interval
I ⊆ R into M ; that is, a map f : I → M such that every point t ∈ I has a
neighborhood U ⊆ I for which f |U : U → M is an isometry. A metric space
isometry from a real interval into M is called a global geodesic. For instance,
the geodesics in Euclidean spaces Rn are straight lines, in accordance with our
intuition.
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3 Hyperbolic geometry

3.1 The hyperbolic plane

In this section, we introduce some of the basic objects and results of hyperbolic
geometry, following the notes of Walkden [Wal19]. The hyperbolic plane is the
open submanifold H2 = {x + iy : x ∈ R and y > 0} of C equipped with the
following Riemannian metric: for each z ∈ H2 and v, w ∈ TzH2 ≃ R2, we define

⟨v, w⟩z =
v · w

(Im z)2
.

Alternatively, we can endow the open submanifold B2 = {z ∈ C : |z| < 1} of C
with a Riemannian manifold structure by defining

⟨v, w⟩z =
4 v · w(
1− |z|2

)2
for each z ∈ B2 and v, w ∈ TzB2 ≃ R2. These two Riemannian manifolds are
isometric via the isometry f : H2 → B2 given by the rule

f(z) =
z − i

iz − 1
.

Thus, as far as the Riemannian manifold structure is concerned, it makes no
difference whether we work in H2 or B2. Note that the inner products on
the tangent spaces to H2 and B2 are positive scalar multiples of the usual dot
product, and so the notion of angles in these spaces coincides with the notion
of angles in C = R2.

Suppose γ : [a, b] → H2 is a smooth curve segment. By definition, the length
of γ can be computed as follows:

length γ =

∫ b

a

∥γ′(t)∥γ(t) dt =
∫ b

a

√
⟨γ′(t), γ′(t)⟩γ(t) dt

=

∫ b

a

√
γ′(t) · γ′(t)
(Im γ(t))2

dt =

∫ b

a

|γ′(t)|
Im γ(t)

dt.

If γ were a smooth curve segment in B2, the length of γ can be computed
similarly, yielding the formula

length γ =

∫ b

a

2 |γ′(t)|
1− |γ(t)|2

dt.

Recall that the notion of lengths of curves in the hyperbolic plane is given to
us from its Riemannian manifold structure. It turns out that the Riemannian
manifold structure also gives us a notion of area. While we choose not to define
this formally, this notion of area looks as follows in the hyperbolic plane: given
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a sufficiently “nice” subset S ⊆ H2 (including, for instance, the open and closed
subsets), the area of S is given by the formula

areaS =

∫∫
S

1

y2
dx dy.

Similarly, a sufficiently nice subset S ⊆ B2 has area

areaS =

∫∫
S

4

(1− (x2 + y2))
2 dx dy.

3.2 Mobius transformations

Suppose a, b, c, and d are real numbers with ad−bc > 0. These numbers induce
an (orientation-preserving) isometry γ : H2 → H2 given by the rule

γ(z) =
az + b

cz + d
.

This map is called the Mobius transformation of H2 induced by a, b, c, d. Fur-
thermore, the association GL+(2,R) → Isom+(H2) from the group of real 2× 2
matrices with positive determinant to the group of orientation-preserving self-
isometries of H2 given by the definition above is a surjective group homomor-
phism with kernel {λI : λ ∈ R \ {0}}. Via the isometry H2 ≃ B2, we may
similarly define Mobius transformations of B2. A Mobius transformation is de-
termined completely by its values at three distinct points.

3.3 Hyperbolic polygons

In either H2 or B2, the geodesic images are the segments of circles and lines that
intersect the boundary of the space (regarded as a subset of C) at right angles.
Given any two points z and w in the hyperbolic plane or its boundary, there
is one and only one geodesic that joins z with w—we denote this geodesic by
[z, w].

Given a list z1, . . . , zn of points in the hyperbolic plane or its boundary, the
hyperbolic polygon generated by z1, . . . , zn is defined to be the open region in
the hyperbolic plane bounded by the geodesics [z1, z2], [z2, z3], . . . , [zn−1, zn],
[zn, z1] (called the geodesic sides of the hyperbolic polygon corresponding to
z1, . . . , zn). We also call such an object a hyperbolic n-gon. Note that any
hyperbolic n-gon with generating list of vertices z1, . . . , zn is also a hyperbolic
(n + 1)-gon, generated by the vertices z1, . . . , zn+1 with zn+1 being any point
on the geodesic segment joining zn to z1.

We now state a theorem that relates the area of a hyperbolic polygon with
its internal angles.

Theorem 2 (Gauss-Bonnet for hyperbolic polygons). Suppose that P is a hy-
perbolic polygon with generating list of vertices z1, . . . , zn. Then

areaP = (n− 2)π − (∠z1 + . . .+ ∠zn),
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where ∠zj denotes the internal angle of P at zj.

In particular, Theorem 2 says that any hyperbolic polygon with generating
vertices z1, . . . , zn must satisfy ∠z1+ . . .+∠zn < (n− 2)π. The converse is also
true: there exists a hyperbolic polygon with internal angles θ1, . . . , θn whenever
θ1, . . . , θn are positive real numbers satisfying θ1 + . . . + θn < (n − 2)π. For
instance, given any three nonnegative real numbers θ, φ, ψ for which θ+φ+ψ <
π, there exists a hyperbolic triangle with internal angles θ, φ, ψ.

3.4 Poincare’s theorem

Let P be a hyperbolic polygon endowed with a fixed choice of a generating list
of vertices. Given two (possibly equal) geodesic sides s and t, a side-pairing
transformation that pairs s with t is a Mobius transformation that maps s onto
t and takes P into its complement in the hyperbolic plane. Suppose we have
a partition of the set of geodesic sides into pairs (i.e., two-element sets), as
well as, for each pair {s, t} in the partition, a side-pairing transformation γ{s,t}
that pairs either of s and t with the other (so that γ−1

{s,t} pairs either t or s,

respectively, with the other).
We now describe a procedure that will generate what are called the elliptic

cycles of the above setup. Given a pair s, t of adjacent geodesic sides with vertex
v between them, we define ∗(v, s) = (v, t). For any vertex-side pair (v, s), we also
denote by γ(v, s) the vertex-side pair to which (v, s) is mapped upon applying
the side-pairing transformation associated with s.

Begin by drawing an edgeless graph whose vertices coincide with our initial
choice of vertices of P . Fix a vertex-side pair (v0, s0). Now apply γ and ∗
repeatedly until the pair (v0, s0) recurs. During each γ → ∗ iteration, draw an
(undirected) edge between the vertex right before the iteration and the vertex
right after. If there remains a vertex in the graph with degree zero, choose such
a vertex and incident geodesic side and repeat the above process upon replacing
(v0, s0) with this new vertex-side pair.

Once this procedure terminates, the resulting graph will be a disjoint union
of cycles (including those of length one). The components of this graph are
called the elliptic cycles of our system (which consists of the polygon and our
choice of vertices, geodesic sides, and side-pairing transformations). For each
elliptic cycle C with vertices v1, . . . , vk, the angle sum of C, denoted by sum(C),
is the sum of the internal angles of P at v1, . . . , vk. We say that C satisfies the
elliptic cycle condition if there exists a positive integer m, called the elliptic
cycle number, for which m · sum(C) = 2π. We are now ready to state Poincare’s
theorem for hyperbolic polygons.

Theorem 3 (Poincare). Let P be a hyperbolic polygon equipped with a fixed
choice of vertices, geodesic sides, and side-pairing transformations α1, . . . , αn as
above. Let C1, . . . , Cℓ be the associated elliptic cycles. Suppose that C1, . . . , Cℓ
satisfy the elliptic cycle condition with elliptic cycle numbers m1, . . . ,mr. Then
⟨α1, . . . , αn⟩ ⊆ Isom+(H2) has presentation ⟨α1, . . . , αn | γm1

1 , . . . , γmℓ

ℓ ⟩, where
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γj is a word in α1, . . . , αn obtained by applying the procedure described above,
starting at a vertex-side pair with vertex in Cj and recording, from right to left,
the side-pairing map (or its inverse) used at each γ → ∗ iteration.

We use this Theorem in Section 6.1 in order to embed π1(Σ2) in the triangle
group D(3, 3, 4), which we now describe.

3.5 Triangle groups

Suppose that p, q, r ∈ Z≥2 ∪ {∞}. The triangle group D(p, q, r) := ⟨a, b|ap =
bq = (ab)r⟩ is the group of orientation-preserving isometries of the elliptic, Eu-
clidean, or hyperbolic plane that preserve a given tiling of the plane by triangles
with internal angles π/p, π/q, and π/r. Consider one such triangle with vertices
u, v, and w and internal angles π/p, π/q, and π/r, respectively. The generator
a of D(p, q, r) rotates 2π/p clockwise about u, and the generator b rotates 2π/q
clockwise about v.

Remark 1. The group D(p, q, r), which we have called a triangle group, is
known, in other contexts, as a von Dyck group. In such contexts, the corre-
sponding triangle group, often denoted by ∆(p, q, r), is the group of (not neces-
sarily orientation-preserving) isometries of the plane that preserve a given tiling
of the plane by triangles with internal angles π/p, π/q, and π/r. The von Dyck
group D(p, q, r) lives inside ∆(p, q, r) as an index-two subgroup. From here on
out, we will refer to D(p, q, r) by the name triangle group.

Remark 2. With one caveat in Remark 5, we will consider only D(p, q, r) for
which

1

p
+

1

q
+

1

r
< 1.

These such D(p, q, r) can be considered as the group of orientation-preserving
isometries of the hyperbolic plane preserving the triangular tiling.

3.6 Surface groups

Definition 1. Let X be a topological space. The fundamental group of X at
base-point x ∈ X, written π1(X,x), is the set

{loops based at x}/homotopy

with the operation of concatenation of loops.

IfX is path-connected, then the isomorphism class of π1(X,x) is independent
of the choice of the base point x. From now on, all topological spaces we work
with will be path-connected, so we will just write π1(X).

Definition 2. If X is path-connected and has trivial π1(X), then we say X is
simply connected.
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Figure 1: If you identify pairs of edges as indicated by the colors, you obtain
the 2-holed torus. The edges are labeled 0, 1, ..., 7 starting at the top edge and
proceeding counterclockwise around the octagon.

There is a classification theorem that states that every connected closed
orientable surface is homeomorphic to a genus n ≥ 0 surface. Such a surface is
called an n-holed torus, and we denote it by Σn.

Definition 3. A surface group is a group isomorphic to π1(Σn) for some n ≥ 1.

If you draw out a 4n-gon, orient the sides appropriately, and then identify
pairs of edges, you get an n-holed torus [Hat01]. More precisely, we number the
sides from 0 to 4n − 1 while going around the polygon counterclockwise), and
then choose an orientation for each side based on the following rule. An edge
labeled with the value E is oriented

clockwise if E ≡ 0 or 1 (mod 4)

counterclockwise if E ≡ 2 or 3 (mod 4)

To get the edge identifications, we identify an edge E that is 0 (mod 4) with
the edge E′ = E + 2, and identify an edge E that is 1 (mod 4) with the edge
E′ = E + 2.

Here is an illustration of the fundamental polygon with edge identifications
for the 2-holed torus:

<

<

>

>

>

>

<

<

This gives rise to the following presentation of the fundamental group:

⟨a1, b1, a2, b2, ..., an, bn | [a1, b1][a2, b2]...[an, bn]⟩.

3.7 Fundamental groups of orbifolds

The precise definition of an orbifold is not so important, but we reproduce the
definition from [Thu97] for completeness.
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Definition 4. An orbifold O is a Hausdorff space XO with additional structure.
The space XO can be covered by a finite collection of open sets Ui, and this
collection is closed under finite intersections. Each Ui is associated with

1. a finite group Γi,

2. an action of Γi on an open Ũi ⊂ Rn,

3. a homeomorphism ϕi : Ui → Ũi/Γi.

Whenever Ui ⊂ Uj there is an injective homomorphism

fij : Γi ↪→ Γj

and an embedding
ϕ̃ij : Ũi → Ũj

equivariant with respect to fij so that this diagram commutes:

Ũi Ũj

Ũi/Γi Ũj/Γj

Ũj/Γj

Ui Uj

ϕ̃ij

ϕij

ϕi

fij

ϕj

Remark 3. Orbifolds are a generalization of manifolds: orbifolds are locally
modeled as open subsets Ui of Rn quotiented by finite group actions, and for
manifolds these groups are trivial.

Remark 4. An orbifold that is locally modeled as open subsets Ui of Rn is
called an n-orbifold.

The main orbifolds we will consider in this report are S2(p, q, r) which is a
sphere with cone points of orders p, q, r.

Definition 5. At a cone point of order p, we have Z/pZ acting on R2 by
rotations by 2π/p around a point.

3.8 Injection of surface groups into triangle group

We show the existence of injective maps α : π1Σ2 → D(3, 3, 4) and βn : π1Σn →
π1Σ2, so that α ◦ βn : π1Σn → D(3, 3, 4) gives an injection of the surface group
of an n-holed torus into D(3, 3, 4).

First, we handle α. In 2011, Long, Reid, and Thistlethwaite gave a family
of faithful integral 3-dimensional representations of D(3, 3, 4) [LRT11]. More
precisely,
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Theorem 4. Consider a representation of the von Dyck group

D(3, 3, 4) = ⟨a, b | a3 = b3 = (ab)4 = 1⟩

given by

a =

0 0 1
1 0 0
0 1 0


b =

1 2− t+ t2 3 + t2

0 −2 + 2t− t2 −1 + t− t2

0 3− 3t+ t2 (−1 + t)2


When t ∈ R this representation is

1. discrete

2. faithful.

When t ∈ Z the image of the representation is

1. Zariski dense in SL(3,R),

2. infinite index in SL(3,Z)

3. freely indecomposable,

4. purely semisimple,

5. word hyperbolic,

6. and has Property FA.

3.8.1 Injection of π1(Σn) into π1(Σ2)

Let π1(Σ2) have presentation ⟨a, b, c, d | [a, b][c, d]⟩.

Theorem 5. There is a presentation of π1(Σn) in π1(Σ2) given by

π1(Σn) ∼= ⟨an−1, b, c, d, aca−1, ada−1, ..., an−2ca−(n−2), an−2da−(n−2)⟩.

Proof. We show how to find a presentation of π1(Σ3) in π1(Σ2), and then explain
how this generalizes to higher genus surface groups.

Choose the basepoint for Σ3 as in figure 2. The generators of π1(Σ3) consist
of three loops A1, B1, and C1 going around each of the holes in Σ3, and three
loops A2, B2, and C2 going through each of the holes in Σ3. We similarly choose
a basepoint for Σ2 and label the generators a, b, c, and d for π1(Σ2) as in figure
2.

The surface group of genus 3 has 180 degree rotational symmetry, and the
quotient map which identifies points under this rotation is a two fold covering
q : Σ3 → Σ2 of Σ2 by Σ3. Therefore, it induces an embedding of fundamental
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Figure 2: Generators of π1(Σ3) and π1(Σ2)

groups π1(Σ3) ↪→ π1(Σ2), so to find a presentation of π1(Σ3) in π1(Σ2) it is
enough to find where the generators of π1(Σ3) are sent to. We can think of this
as cutting Σ3 in half through the middle hole, and pasting the two ends of each
half together. The left half will need to be rotated so that this pasting occurs
on the left. See figure 3.

The generators B2, C1, and C2 are not affected by this pasting, so they are
just sent to b, c and d. The generator B1 is wrapped around the left hole of Σ2

twice (once for each half of Σ3), so it is sent to a2. The generators A1 and A2

are both conjugated by a, since the action of gluing the two legs of the left half
of Σ3 stretches them around the left hole of Σ2.

Thus, this covering Σ3 → Σ2 gives us a map π1(Σ3) ↪→ π1(Σ2) which sends
the generators

A1 7→ aca−1 B1 7→ a2 C1 7→ c

A2 7→ ada−1 B2 7→ b C2 7→ d.

When we add an extra handle to Σ3 to obtain Σ4, there are two new gener-
ating loops D1, D2 for the fundamental group. They will be sent to the loops
a2ca−2 and a2da−2 under the covering map Σ4 → Σ2, since they wrap around
the left hole of Σ2 once each time we glue together the 4− 1− 1 = 2 handles of
Σ4 which the loops D1 and D2 pass through.

Continuing in this manner, we see that we obtain the stated presentation
for π1(Σn) in π1(Σ2).
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Figure 3: Covering map Σ3 → Σ2

3.9 Z2 is not a subgroup of D(p, q, r)

Theorem 6. Z2 is not a subgroup of D(p, q, r) = ⟨x, y, z | xp = yq = zr =
xyz = 1⟩ with 1/p+ 1/q + 1/r < 1.

This problem can be stated entirely in terms of group theory, without defin-
ing the notion of surface group, and can be solved without using surface groups.
However, there is a very clean proof using them that we give here.

First, we recognize Z2 ∼= π1(Σ1), and the only orbifold up to isomorphism
that has fundamental group isomorphic to Z2 is Σ1. By the Galois correspon-
dence for covering spaces, an injective map π1(Σ1) ↪→ π1(S

2(p, q, r)) corre-
sponds to a covering map S2(p, q, r) → Σ1. Since S2(p, q, r) is compact, the
covering map cannot be infinite sheeted, so say that it is a k-sheeted cover
for some positive integer k. Then χ(S2(p, q, r)) = k · χ(Σ1), where χ denotes
the Euler characteristic. Note that χ(Σ1) = 2 − 2 · 1 = 0, so this equation
implies χ(S2(p, q, r)) = 0. However, according to a formula in [Thu97], it is ac-
tually the case that χ(S2(p, q, r)) < 0, contradiction. Thus there is no injection
Z2 ↪→ D(p, q, r), as desired.

Remark 5. If we relax the hyperbolic condition on D(p, q, r), then we might
be able to find a copy of Z2. For example, consider ⟨xz2, yx2⟩ < D(3, 3, 3).
Considering the tiling of the Euclidean plane by equilateral triangles, we observe
that xz2 and yx2 correspond to translations in linearly independent directions,
so they are infinite order and commute with one another.
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4 Dynamical systems

In this section, we start by examining “hyperbolic toral automorphisms,” which
are linear maps on tori with no eigenvalues of modulus one. We then generalize
this to the notion of Anosov diffeomorphisms on compact smooth manifolds,
and discuss some of their properties. In particular, we sketch the proof that
Anosov diffeomorphisms on compact smooth manifolds are structurally stable,
i.e. that any small C1-perturbation of an Anosov diffeomorphism f remains
conjugate to f via a homeomorphism.

We conclude this section by discussing the dynamics of group actions. We
give a proof that the standard algebraic action of SL(2,Z) on T2 is not topo-
logically rigid, following the example of Hurder in [Hur92].

4.1 Hyperbolic Toral Automorphisms

A matrix A ∈ SL(n,Z) preserves the integer lattice Zn < Rn; hence, the linear
map x 7→ Ax on Rn induces a map fA on Tn = Rn/Zn. If A has no eigenvalues of
modulus one, then we call A a hyperbolic matrix, and we call the map fA : Tn →
Tn a hyperbolic toral automorphism.

4.1.1 Example: The cat map

Let A ∈ SL(2,Z) be the matrix

A =

(
2 1
1 1

)
.

The hyperbolic toral automorphism fA : T2 → T2 induced by this matrix is
called the (Arnold’s) cat map. The eigenvalues of A are

λ1 =
3 +

√
5

2
and λ2 = λ−1

1 =
3−

√
5

2
,

with corresponding eigenvectors

v1 =

(
1 +

√
5

2
, 1

)
and v2 =

(
1−

√
5

2
, 1

)
.

Notice that fA exponentially expands vectors parallel to v1, and exponen-
tially contracts vectors parallel to v2. Thus, the basis {v1, v2} gives us a splitting
R2 ∼= Rv1 ⊕Rv2 of R2 into an expanding subbundle Rv1 and a contracting sub-
bundle Rv2. Moreover, these subbundles are invariant under the action of A on
R2.
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Figure 4: The action of the cat map fA on the unit square, from Wikipedia
[Com08]. The axes in the bottom left represent the expanding and contracting
eigenvectors of A, and the coloring shows where the pieces of the stretched
square end up after we quotient by Z2.

4.1.2 Properties

A homeomorphism f : X → X is called topologically transitive if it has a dense
orbit, i.e. if {fn(x) : x ∈ X} is dense for some x ∈ X. The map f is called
topologically mixing if, for any nonempty open sets U, V ⊂ X, fn(U) ∩ V is
empty for only finitely many n.

When X is a compact metric space, topological transitivity of f : X → X is
implied by topological mixing. Indeed, for each n we can cover X with finitely
many balls of radius 1/n centered at x1, . . . , xkn , so that B = {B1/n(xj) : n ∈
N, 1 ≤ j ≤ kn} is a countable basis for the topology on X.

For each U ∈ B,
⋃
n f

n(U) is open (since f is a homeomorphism) and dense,
since for any nonempty V ⊂ X, fn(U) ∩ V is empty for only finitely many n.
Therefore

⋂
U∈B

⋃
n f

n(U) is dense by the Baire category theorem. In particular,
for any x ∈

⋂
U∈B

⋃
n f

n(U) and U ∈ B containing x, we have that the orbit
of x is contained in

⋃
n f

n(U), and is therefore dense. Thus f is topologically
transitive.

Proposition 1. Let A ∈ SL(2,Z) be a hyperbolic matrix. Then fA : T2 → T2

is topologically mixing.

Proof. We follow the proof in [KH95, Chapter 1.8]. Let v1 and v2 be the two
eigendirections of A, with corresponding eigenvalues λ1 > 1 and λ2 = λ−1

1 , re-
spectively. Note that λ1 and λ2 are irrational (the characteristic polynomial of A
is monic with integer coefficients and no integer roots (because A is hyperbolic),
and therefore has no rational roots).

Let U, V ⊂ T2 be two open balls centered at points p and q, respectively.
Inside U we can find a point p′ so that the line segment ℓ1 from p to p′ is parallel
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to v1, and is therefore stretched by iterating fA. Since λ1 is irrational, the line
parallel to v1 has dense image in T2. Therefore, we can find N1 ∈ N so that
fN1

A (ℓ1) intersects the line through q in the direction of v2. Hence let r ∈ U be

the point on ℓ1 so that r′ = fN1

A (r) lies on this line segment.
The idea is that, since r′ = q + tv2 for some t ∈ R, successive iterates

of r′ under fA converge toward q, hence only finitely many lie outside of V .
Thus fn(U) ∩ V is empty for only finitely many n, since it contains fn(r) =
fn−N1(r′).

4.2 Anosov diffeomorphisms

4.2.1 Definitions

We now generalize the notion of a hyperbolic toral automorphism to nonlinear
functions. Suppose M is a compact Riemannian manifold. An Anosov diffeo-
morphism of M is a diffeomorphism f : M → M for which we can write TpM
as an internal direct sum Esp⊕Eup for each p ∈M in such a way that there exist
constants C > 0 and 0 < λ < 1 for which the following conditions hold at each
point p ∈M :

(1) dfp(E
s
p) = Esf(p) and dfp(E

u
p ) = Euf(p).

(2) ∥d(fn)p(v)∥ ≤ Cλn∥v∥ for each n ∈ Z+ and v ∈ Esp.

(3) ∥d(f−n)p(v)∥ ≤ Cλ−n∥v∥ for each n ∈ Z+ and v ∈ Eup .

Hyperbolic toral automorphisms fA : Tn → Tn are examples of Anosov dif-
feomorphisms on Tn. If A is diagonalizable, then we can just take the unstable
subbundle Eup to be the sum of the eigenspaces for eigenvalues with modulus
greater than 1, and the stable subbundle Esp to be the sum of the eigenspaces
for eigenvalues with modulus less than 1. Even if A is not diagonalizable, it is
possible to pick a norm for which A is contracting on generalized eigenspaces
Eλ for |λ| < 1 and expanding on Eλ for |λ| > 1. See [KH95, Chapter 1.2].

4.2.2 Properties of Anosov diffeomorphisms

Anosov diffeomorphisms have an important property, called structural stability,
which roughly says that, if f is Anosov, then any small perturbation of f will
remain conjugate to f . To describe this in more detail, we will need to define
some terms.

For this section, let M be a compact smooth manifold. Whenever 0 ≤ r ≤
k ≤ ∞, the set Diffk(M) = Diffk(M,M) comes equipped with the Cr topology,
which we define sequentially as follows. First, fix a “nice” finite collection A of
smooth charts whose domains cover M . Given a sequence (fn)

∞
n=1 in Diffk(M)

and f ∈ Diffk(M), we write fn → f if for any pair of smooth charts in A,
the coordinate representation of fn in these charts and its partial derivatives
up to order r converge uniformly to the coordinate representation of f and its
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partial derivatives up to order r, respectively, on a suitable common domain of
definition.

Suppose f, g ∈ Diffk(M). We say that f is topologically conjugate to g if
there exists a homeomorphism h : M → M such that f = hgh−1. Note that
topological conjugacy defines an equivalence relation on Diffk(M). We say that
f is Cr-structurally stable if it has a Cr-neighborhood U ⊆ Diffk(M) such that
every g ∈ U is topologically conjugate to f .

We can now state the following result:

Theorem 7. Anosov diffeomorphisms on M are C1-structurally stable.

We will only give a sketch of the argument. For the full proof, see [Coo] or
[RV]. The first step is to establish the following lemma, which is often referred
to as “persistence of hyperbolicity.”

Lemma 1. The set of Anosov diffeomorphisms on M is open in the C1 topology
on Diff1(M).

Again, we will only sketch the main idea of proof. Let f ∈ Diff1(M) be
Anosov, so that at each point p ∈ M we have a df -invariant splitting TpM =
Esp ⊕ Eup such that

∥dfnp (v)∥ ≤ λn∥v∥ for v ∈ Esp,

∥df−np (v)∥ ≤ λn∥v∥ for v ∈ Eup .

Note here that we assume that C = 1 (where C is as in the definition of an
Anosov diffeomorphism), but this requires an argument (see Theorem 3.1 in
[Coo]). We need to find a neighborhood N of f such that for any g ∈ N ,
we likewise have a splitting TpM = Ẽsp ⊕ Ẽup into dg-invariant expanding and
contracting subbundles.

Moving forward, we will often suppress the subscripts p from the notation.
With respect to the direct sum decomposition TM = Es ⊕ Eu for f , we can
write df as a diagonal matrix

df =

(
dfss

dfuu

)
,

where dfss = πs◦df |Es with πs : TM → Es being the projection map, and dfuu is
defined similarly. We can also write dg with respect to this same decomposition
TM = Es ⊕ Eu for f , to obtain a matrix

dg =

(
dgss dgsu
dgus dfuu

)
,

where e.g. dgsu = πs◦dg|Eu and the other entries are defined similarly. One can
show that the norms of the matrix entries of dg vary continuously with g, so that
for g close to f we have that ∥dgus∥, ∥dgsu∥ are small and ∥dg−1

uu ∥, ∥dgss∥ < λ.
Using this, it is possible to construct the subbundles Ẽs and Ẽu for g and show
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that they are dg-invariant and that TM = Ẽs ⊕ Ẽu, hence showing that g is
Anosov.

Now we return to the sketch of the proof of Theorem (7). We will make use
of two properties of Anosov diffeomorphisms, expansiveness and the shadowing
property. A diffeomorphism f ∈ Diff1(M) is said to be expansive, with expansive
constant r > 0, if, whenever x, y ∈M satisfy d(fn(x), fn(y)) ≤ r for all n ∈ Z,
then x = y. Once one has shown the ‘local stable manifold theorem’ (see
Theorem 2.6 in [Coo]), it follows quickly that any Anosov diffeomorphism is
expansive.

A (finite or infinite) sequence of points {xn} is called a δ-pseudo-orbit if
d(f(xn), xn+1) < δ for all pairs xn, xn+1 in the sequence. The sequence is said
to be ε-shadowed by a point x′ ∈ M if d(f(x′), xn) ≤ ε for all for all pairs
xn, xn+1 in the sequence.

A diffeomorphism f ∈ Diff1(M) is said to satisfy the shadowing property if
there is some ε0 > 0 such that for any 0 < ε < ε0, we can pick δ > 0 small
enough so that every δ-pseudo-orbit for f is ε-shadowed by a genuine orbit of
some x′ ∈ M . It is possible to show that any Anosov diffeomorphism has the
shadowing property, and moreover we can use expansiveness to show that the
point x′ is unique.

Using persistence of hyperbolicity, we in fact have that these two properties
persist in small neighborhoods of an Anosov diffeomorphism f ∈ Diff1(M).

Now let us fix some f ∈ Diff1(M) and pick N0 to be a small neighborhood of
f in which expansivity and the shadowing property persist. Pick some g ∈ N .
We construct a homeomorphism h : M → M conjugating f and g using the
shadowing property. Given x ∈ M , we know that the orbit of x under g is a
pseudo-orbit for f because f and g are close in the C0 metric on M . Therefore,
the shadowing property tells us that there exists a unique point x′ ∈ M which
shadows the orbit of x under g. Define h : M →M by setting h(x) = x′.

Note that if x′ shadows the orbit of x under g, then f(x′) shadows the orbit
of g(x) under g. Hence we have that h(g(x)) = f(x′), which shows that

h−1 ◦ f ◦ h(x) = h−1(f(x′))

= g(x),

so h conjugates f and g.
We can again use the shadowing property of g to show that h is continuous.

Let {xn} be a sequence in M converging to x ∈ M . Since M is compact, after
passing to a subsequence we know that {h(xn)} converges to some y ∈ M .
Notice that

d(f i(h(xn)), g
i(x)) ≤ d(f i(h(xn)), g

i(xn)) + d(gi(xn), g
i(x)).

Taking i → ∞, the first term is bounded by a fixed ε > 0 by the shadowing
property, and the second quantity tends to zero by continuity of g. Now taking
n→ ∞, we see that the orbit of x under g is shadowed by limn→∞ h(xn) = y, so
h(x) = y, proving continuity. One argues in a similar spirit using the shadowing
property that h is a homeomorphism, and this completes the proof.
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Another property of Anosov diffeomorphisms is that they are closed under
conjugation: To see this, let γ and γ′ be smooth diffeomorphisms on a compact
manifold M , and suppose that γ is Anosov. If γ′ ∈ Γ then d(γ′γγ′−1) =
d(γ′)d(γ)d(γ′)−1. Let A = d(γ) and Q = d(γ′) (note that d(γ) = dp(γ) and
d(γ′) = dq(γ

′) depend on p, q ∈ M , but we drop the subscript for notational
convenience). If ∥Av∥ < λ∥v∥ then

∥(QAQ−1)n(Qv)∥ = ∥QAnQ−1(Qv)∥ = ∥QAnv∥
≤ ∥Q∥∥Anv∥
< ∥Q∥λn∥v∥,

where
∥Q∥ = ∥dq(γ′)∥ = sup

∥w∥=1

∥dq(γ′)w∥

is bounded above as q varies over points in M since M is compact. Similarly if
∥A−1v∥ < λ∥v∥ then we have that ∥(QAQ−1)−n(Qv)∥ < ∥Q∥λn∥v∥.

Let Eu and Es be the stable and unstable subbundles for γ, and define
Ẽu := d(γ′)(Eu) = Q(Eu) and Ẽs := d(γ′)(Es) = Q(Es). Then the above
observation shows that

∥d(γ′γγ′−1)n(w)∥ = ∥d(γ′γγ′−1)n(QQ−1w)∥
≤ ∥Q∥λn∥Q−1w∥
≤ ∥Q∥∥Q−1∥λn∥w∥
= Cλn∥w∥

for all w ∈ Ẽs, where C = supp{∥Q∥∥Q−1∥} is a fixed constant. We also know

that Ẽs is d(γ′γγ′−1)-invariant, since

d(γ′γγ′−1)(Ẽs) = d(γ′γγ′−1) ◦ d(γ′)(Es) = d(γ′) ◦ d(γ)(Es) = d(γ′)(Es) = Ẽs

by the d(γ)-invariance of Es. Similarly Ẽu is d(γ′γγ′−1)-invariant and for all
w ∈ Ẽu, ∥d(γ′γγ′−1)−n(w)∥ ≤ Cλn∥w∥.

Moreover, by similar reasoning we see that the inverse map w 7→ Q−1w also
sends Ẽs into Es and Ẽu into Eu, so we in fact get isomorphisms Es ∼= Ẽs and
Eu ∼= Ẽu. Since TM = Eu ⊕ Es, this therefore implies that TM ∼= Ẽu ⊕ Ẽs

since d(γ′) is an isomorphism. Hence γ′γγ′−1 is Anosov.

4.3 Anosov actions

4.3.1 Definitions

A smooth group action of a group Γ on a manifold M is a homomorphism
α : Γ → Diff∞(M). For example, SL(n,Z) acts on Tn by the map A 7→ fA.
Note that the notion of a smooth group action generalizes the notion of a single
smooth diffeomorphism f acting on a manifold M , since one can think of this
as a Z action (via the map n 7→ fn).
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One says that an action α : Γ → Diff∞(M) is Anosov if α(γ) is Anosov for
some γ ∈ Γ. If Γ is finitely generated, then there is a notion of structural stability
for actions α : Γ → Diff∞(M). If Γ = ⟨γ1, . . . , γk⟩ is a finitely generated group
then we can define the Cr distance between two actions α, α′ : Γ → Diff∞(M) to
be the maximum of the Cr distances between α(γi) and α

′(γi) for each generator
γi.

We say that α : Γ → Diff∞(M) is topologically rigid if there exists some ε > 0
such that, for any α′ : Γ → Diff∞(M) within an ε-ball of α in the C1 topology,
we can find a homeomorphism H : M →M such that H ◦α′(γ)◦H−1 = α(γ) for
all γ ∈ Γ. Notice that H cannot depend on γ, so this is stronger than requiring
each α′(γ) be conjugate to α(γ) by any homeomorphism Hγ .

We say that α : Γ → Diffr(M) is Cr-deformation rigid if, whenever we have
a continuous path αt (t ∈ [0, 1]) of Cr actions on M with α0 = α and which
are contained in an ε-ball around M (for ε small enough), we can find a family
of Cr diffeomorphisms Ht : M → M (t ∈ [0, 1]) such that H0 = idM and
Ht ◦ α′

t(γ) ◦H−1
t = αt(γ) for all γ ∈ Γ and all t ∈ [0, 1]. If r = 0 then we say

that α is topologically deformation rigid.

4.3.2 Rigidity

As we have seen, individual Anosov diffeomorphisms are structurally stable.
On the other hand, as the following example of Hurder demonstrates (Theorem
7.22 in [Hur92]), one can have Anosov group actions which are not topologically
deformation rigid.

Theorem 8 (Hurder, 1990). There exists an analytic family {φt : 0 ≤ t ≤ 1}
of volume-preserving, real analytic actions of SL(2,Z) on T2, with φ0 = φ the
standard action, such that φt is not topologically conjugate to φ for all 0 ≤ t ≤ 1.

Here, the standard action φ of SL(2,Z) on T2 is the action by matrix multi-
plication, i.e. φ(A) is the map x+Z2 7→ Ax+Z2 (we will often just write A to
mean φ(A)). For clarity and to motivate our later work, we recount the proof
here.

The key idea is to use the fact that SL(2,Z) is generated by the matrices

A =

(
0 −1
1 0

)
and B =

(
1 −1
1 0

)
,

which have order 4 and 6, respectively. Furthermore, these matrices have very
few relations between them: the only nontrivial relation is that A2 = B3 = −I.
Therefore, SL(2,Z) looks like the free product of the groups Z/(4) ∼= ⟨A⟩ and
Z/(6) ∼= ⟨B⟩, with the additional relation A2 = B3 = −I (in other words,
SL(2,Z) can be written as an amalgamated product SL(2,Z) ∼= Z/(4) ∗Z/(2)
Z/(6)). This means we have some freedom in how to perturb the generators A
and B, since we only have to preserve the relation A2 = B3 = −I.

Hurder constructs a one-parameter family {φt : 0 ≤ t ≤ 1} of deformations
of the standard action φ0 = φ of SL(2,Z) on T2 as follows. Consider the vector
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field
−→
Z 1 = x ∂y −y ∂x, which is a counterclockwise rotation around the origin.

We restrict
−→
Z 1 to a small ball around the origin by taking a smooth bump

function ψ ∈ C∞
c (R) with supp(ψ) ⊂ B10−4(0) and ψ|B10−5 (0) ≡ 1, and form

the vector field −→
Z ψ = ψ(x2 + y2)

−→
Z 1.

We now form the vector field Z to be

Z =
∑

(n,m)∈Z2

DT(n+1/2,m)
−→
Z ψ,

where DT(n+1/2,m)
−→
Z ψ is the translate of

−→
Z ψ to be centered at (n + 1/2,m).

Note that this sum is well defined since the supports of the translates do not
overlap.

Let F (t) be the rotational flow of this vector field on R2, which descends to a
flow on F̃ (t). We deform the standard action φ of SL(2,Z) on T2 by perturbing
the action of A:

φt(A) = F̃−1(t) ◦ φ(A) ◦ F̃ (t),
φt(B) = B.

In order to check that this really defines an action of SL(2,Z), we need to verify
that φt(A)

2 = idR2 and φt(B)3 = idR2 . The latter identity is clear, and for the
former we have that

φt(A)
2 = (F̃−1(t) ◦ φ(A) ◦ F̃ (t))(F̃−1(t) ◦ φ(A) ◦ F̃ (t))
= F̃−1(t) ◦ φ(A2) ◦ F̃ (t)
= idR2 ,

where the last line follows because A2 = −I, which is a rotation through π, and
thus φ(A2) ◦ F̃ (t) = F̃ (t) since this rotation preserves F̃ .

Thus, we have a family {φt : 0 ≤ t ≤ 1} of deformations of φ. The next step
is to show that φt cannot be conjugated to φ if t ̸= 0, which is the content of
the next proposition.

Proposition 2. If there exists a homeomorphism H : T2 → T2 conjugating φt
to φ0, then t = 0.

Proof. H must fix the origin, so it admits a unique lift Ĥ : R2 → R2 which fixes
the origin and conjugates φ̂t to φ̂0. Thus,

Ĥ ◦A ◦ Ĥ−1 = φ̂t(A), (1)

Ĥ ◦B ◦ Ĥ−1 = B. (2)

Since φt(A) = F̃ (t)−1 ◦ φ(A) ◦ F̃ (t), the first equality can be written as

A = G−1 ◦A ◦G (3)
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with G = F (t) ◦ Ĥ.
We claim that

C−1 ◦ F (t) ◦ Ĥ ◦ C = Ĥ (4)

is true when restricted to the x-axis. To see this, note that because A commutes
with F (t) ◦ Ĥ and B commutes with Ĥ, we have that

C−1 ◦ F (t) ◦ Ĥ ◦ C = B−2 ◦A ◦ F (t) ◦ Ĥ ◦A−1 ◦B2

= B−2 ◦ F (t) ◦ Ĥ ◦B2

= B−2 ◦ F (t) ◦B2 ◦ Ĥ.

We claim that image of the x-axis under Ĥ is reasonably close to the x-axis.
In particular, this means that B2 ◦ Ĥ sends the x-axis to a neighborhood of the
y-axis, so F (t) acts trivially on it. Hence we have that B−2◦F (t)◦B2◦Ĥ(x, 0) =
B−2 ◦B2 ◦ Ĥ(x, 0) = Ĥ(x, 0) as desired.

To justify this claim, first note that, by inverting both sides of equation
(1) and using that φ−1

t (A) = φt(A
−1), it follows that ĤA−1 = φt(A

−1)Ĥ.
Therefore

ĤA−1B2 = φt(A
−1)ĤB2 = φt(A

−1)B2Ĥ.

Since A−1B2 preserves the x-axis, the above equation shows that Ĥ(x, 0) =
φt(A

−1)B2Ĥ(x, 0), i.e. that Ĥ(x, 0) ∈ (φt(A
−1)B2 − idR2)−1((0, 0)). Because

A−1B2(x, y) = (x−y, y), the set (A−1B2−idR2)−1((0, 0)) is precisely the x-axis.
Note that φt is a continuous deformation of φ, so we can find t small enough so
that ∥φt − φ0∥sup < ε for some small ε. Then (φt(A

−1)B2 − idR2)−1((0, 0)) is
contained in (A−1B2−idR2)−1(Bε(0)), which is equal to the strip Sε = {(x, y) ∈
R2 : |y| < ε}. Thus Ĥ(x, 0) ∈ Sε, showing that image of the x-axis under Ĥ is
reasonably close to the x-axis.

Then, restricting (4) to the x-axis gives us that

F (t) ◦ Ĥ1(x, 0) = C ◦ Ĥ1(x, 0). (5)

We know that Ĥ fixes the origin. On the other hand, if t ̸= 0 then Ĥ
cannot map the entire x-axis into itself, for then (4) cannot hold for (x, 0) with
Ĥ(x, 0) lying in the support of F (t), since then F (t) will perturb these points
vertically while C preserves horizontal lines. Thus, by continuity we can find
(x′, 0) such that Ĥ(x′, 0) = (x′′, c) for c > 0 small. But then (5) cannot hold,
for C is a leftward shearing motion and, when c and t are sufficiently small,
F (t) is not.
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5 Nilmanifolds

There is a natural question: what kind of spaces explicit Anosov actions? We
had seen earlier that the torus has Anosov Z-actions using hyperbolic toral
automorphisms (e.g. cat map), and one of our results is that the surface groups
have an Anosov action on T3. It turns out that nilmanifolds are the spaces that
we want to consider. Intuitively, they are generalization of Td. Our goal in this
section is to explore whether we can generalize our result of an Anosov surface
group action on T3 to an action on nilmanifolds. Before delving into the notion
of nilmanifolds and how we can construct a surface group action on them, we
begin with a review of Lie theory.

5.1 Lie Theory

5.1.1 Review of Lie Groups and Lie Algebras

A Lie group G is a smooth manifold with group structure in which multiplication
× : G×G→ G and inverse (−)−1 : G→ G are smooth maps.

A trivial example is Rd with addition. A more standard example is the
general linear group GL(n,R). It is a smooth n2-dimensional manifold, and
we can give it group structure by matrix multiplication and matrix inversion,
which can be shown to be smooth. We will be interested in closed subgroups of
GL(n,R). They are Lie groups from Theorem 20.12 on [Lee03], and we call them
matrix Lie groups. A example of this is the Heisenberg group H3(R) ≤ GL(3,R),
which consists of matrices of the form1 a c

0 1 b
0 0 1

 (6)

for a, b, c ∈ R. This is a closed subgroup of GL(3,R), making it a 3-dimensional
Lie group. The Heisenberg group will be a recurring example throughout this
section.

A Lie algebra g is a vector space with a operation [−,−] : g× g → g, called
the Lie bracket, satisfying

1. Bilinearity: [λ1u + λ2v, w] = λ1[u,w] + λ2[v, w] and [w, λ1u + λ2v] =
λ1[w, u] + λ2[w, v] for λ1, λ2 ∈ R and u, v, w ∈ g,

2. Alternativity: [u, u] = 0 for u ∈ g,

3. Jacobi Identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for u, v, w ∈ g,

4. Anti-commutativity: [u, v] = −[v, u] for u, v ∈ g.

We shall assume that all Lie algebras are finite-dimensional and are over R.
These two objects are very related, particularly by the Lie-Group-Lie-Algebra
correspondence. This gives us a one-to-one way to correspond simply connected
Lie groups and Lie algebras with nice properties. Namely, given a Lie group,
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we can consider its tangent space at identity and assign it a certain bracket to
make a Lie algebra. When the Lie group is simply-connected, this association
is unique. We will not go into too much detail and refer the reader to plenty of
references along the way, see [Hal03] and [Lee03] for more formality.

Of particular interest is the correspondence for matrix Lie groups. For a ma-
trix Lie group G, we can define its associated Lie algebra g as follows. Consider
the map exp :Mn(R) →Mn(R) defined on n-by-n real matrices given by

exp(X) =

∞∑
n=0

Xn

n!
. (7)

We can see that series converges for allX ∈Mn(R), so map is well-defined. Then
the Lie algebra g consists of n-by-n real matrices M in which exp(tM) ∈ G for
all t ∈ R, see Theorem 3.20 on [Hal03]. That is, g = {X ∈ Mn(R) : exp(tX) ∈
G, ∀t ∈ R}. We call the restricted map exp : g → G the exponential map from
the Lie algebra g to the Lie group G.

As an example, the Lie algebra h3(R) of the Lie group H3(R) consists of
matrices 0 a c

0 0 b
0 0 0

 (8)

for a, b, c ∈ R, with Lie brackets [X,Y ] = XY − Y X for X,Y ∈ h3(R), see
Proposition 3.26 on [Hal03] . Note that for X ∈ h3(R), we have Xn = 0 for
n ≥ 3, so its exponential is just exp(X) = I +X +X2/2.

5.1.2 Nilpotent Groups and Lie Algebras

Before proceeding, we define the notion of nilpotent groups and Lie algebras. A
group G is nilpotent if we have a series of normal subgroups

{1} = Z0 ◁ Z1 ◁ ...◁ Zn = G

where Z1 = Z(G) and Zi+1/Zi = Z(G/Zi), and we say G is n-step nilpotent,
where n is the smallest such. Note that G is 1-step nilpotent if and only if it is
abelian. Intuitively, these groups are almost abelian, and the smaller n is, the
more abelian it is.

A Lie algebra g is nilpotent if we have a series of subalgebras

g = g0 ≥ ... ≥ gn−1 ≥ gn = {0}

where gi+1 = [g, gi], and we say g is n-step nilpotent, where n is the smallest
such. We remark that there are several equivalent ways to define nilpotency for
groups; in particular, the lower central series definition parallels the notion for
Lie algebra.

For instance, the Heisenberg group H3(R) and its Lie algebra are 2-step
nilpotent (as a group and a Lie algebra, respectively). Indeed, its center Z(H3(R))
consists of matrices in the form (6) with a = b = 0 and c ∈ R. One can then
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verify computationally that Z(H3(R)) is abelian, however H3(R) itself is not
abelian. Similarly, we can see that [h3(R), h3(R)] consists of matrices in the
form (8) with a = b = 0 and c ∈ R, and, in turn, it can be shown that
[h3(R), [h3(R), h3(R)]] = {I}.

5.2 Nilmanifolds

Let G be a simply-connected Lie group. Consider a closed subgroup H ≤ G.
The left coset space G/H, which consists of gH = {gh : h ∈ H} for g ∈ G, is a
smooth manifold with the quotient topology, see Proposition 21.17 on [Lee03].
With this, we define a lattice Γ of G to be a subgroup of G in which Γ is discrete
(every point is isolated) and G/Γ is compact. We remark that Γ is not generally
a normal subgroup, so G/Γ may not be a Lie group.

Given a simply-connected nilpotent Lie group G and a lattice Γ ≤ G, we
call the quotient G/Γ a nilmanifold.

A basic example is to take G = Rd, which is simply-connected and abelian
(so nilpotent), with Γ = Zd, which is certainly discrete. Then Td = Rd/Zd is
compact, so it is a nilmanifold. A more non-trivial example of a nilmanifold is
the following: let G = h3(R) be the Heisenberg group. As stated previously,
this is a (nonabelian) nilpotent Lie group. Identifying it with R3 tells us that it
is simply connected. Now, consider the subset Γh3(R), consisting of matrices of
the form (6) where we take coefficients a, b, c from Z. One can show that Γh3(R)
is a lattice of h3(R), making h3(R)/Γh3(R) a nilmanifold.

It turns out that the nilmanifold h3(R)/Γh3(R) defined above does not exhibit
any Anosov diffeomorphisms, see Exercise 17.3.4 on [KH95]. We shall now see
an example of one that does.

5.3 Anosov Diffeomorphism on Nilmanifolds

Here, we will describe the construction of a particular nilmanifold with an
Anosov diffeomorphism acting on it. This example is due to Smale and Borel,
see [Sma67] on page 762. However, the source contains a mistake regarding the
lattice not being a subgroup, so we will follow a corrected construction by Burns
and Wilkinson on page 95 of [BW08].

Let us denote H = h3(R) and h = h3(R) for this subsection. The Lie group
we shall be dealing with is G = H ×H. This is simply-connected and nilpotent
as direct sum preserves those properties. We can view G as 6-by-6 matrices of
the form 

1 a1 c1 0 0 0
0 1 b1 0 0 0
0 0 1 0 0 0
0 0 0 1 a2 c2
0 0 0 0 1 b2
0 0 0 0 0 1

 (9)

for ai, bi, ci ∈ R. The Lie algebra of G is g = h ⊕ h, and similarly its
exponential map expg = exph ⊕ exph, see Exercise 3.9.5 in [Hal03]. In turn, we
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can represent it as 6-by-6 matrices
0 a1 c1 0 0 0
0 0 b1 0 0 0
0 0 0 0 0 0
0 0 0 0 a2 c2
0 0 0 0 0 b2
0 0 0 0 0 0

 (10)

for ai, bi, ci ∈ R. It is generated by X1, Y1, Z1, X2, Y2, and Z2, which are
the matrices of the form (10) with zero entries everywhere except a one at
a1, b1, c1, a2, b2, and c2, respectively.

Let σ be the field automorphism of Q(
√
3) given by a+ b

√
3 7→ a− b

√
3 for

a, b ∈ Q, and define

Γ0 =




0 u w/2 0 0 0
0 0 v 0 0 0
0 0 0 0 0 0
0 0 0 0 σ(u) σ(w/2)
0 0 0 0 0 σ(v)
0 0 0 0 0 0

 : u, v, w ∈ Z[
√
3]


.

Next, define

Γ = exp(Γ0)

=




1 u (w + uv)/2 0 0 0
0 1 v 0 0 0
0 0 1 0 0 0
0 0 0 1 σ(u) σ((w + uv)/2)
0 0 0 0 1 σ(v)
0 0 0 0 0 1

 : u, v, w ∈ Z[
√
3]


⊆ G.

For convenience, let us relabel the elements of G via the identification
1 u w 0 0 0
0 1 v 0 0 0
0 0 1 0 0 0
0 0 0 1 x z
0 0 0 0 1 y
0 0 0 0 0 1

↔


u
v
w
x
y
z


for each u, v, w, x, y, z ∈ R. The matrix product of two elements of Γ is then
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given by the formula
u
v

(w + uv)/2
σ(u)
σ(v)

σ((w + uv)/2)

 ·


x
y

(z + xy)/2
σ(x)
σ(y)

σ((z + xy)/2)

 =


u+ x
v + y

((u+ x)(v + y) + w + z + uy − xv)/2
σ(u+ x)
σ(v + y)

σ((u+ x)(v + y) + w + z + uy − xv)


for u, v, w, x, y, z ∈ Z[

√
3]. From this, it is evident that Γ is closed under matrix

multiplication and matrix inversion, and we see from its definition that Γ con-
tains the identity matrix. Therefore, Γ is a subgroup of G. It is also discrete
and cocompact in G, and so the quotient G/Γ is a nilmanifold.

We will now define an Anosov diffeomorphism of G/Γ. Let λ = 2 +
√
3 ∈

Z[
√
3], and note that λ−1 = σ(λ) = 2 −

√
3. Define an R-linear isomorphism

f : g → g by

f(X1) = λX1

f(Y1) = λ2Y1

f(Z1) = λ3Z1

f(X2) = σ(λ)X2

f(Y2) = σ(λ)2Y2

f(Z2) = σ(λ)3Z2.

Note that f preserves the commutator Lie bracket on the basis {X1, Y1, Z1, X2,
Y2, Z2} for g, and so it is a Lie algebra automorphism of g. As before, let us
relabel the elements of g via the identification

0 u w 0 0 0
0 0 v 0 0 0
0 0 0 0 0 0
0 0 0 0 x z
0 0 0 0 0 y
0 0 0 0 0 0

↔


u
v
w
x
y
z

 .

The values of f at matrices in Γ0 are given by

f


0 u w/2 0 0 0
0 0 v 0 0 0
0 0 0 0 0 0
0 0 0 0 σ(u) σ(w/2)
0 0 0 0 0 σ(v)
0 0 0 0 0 0

 =


0 λu λ3w/2 0 0 0
0 0 λ2v 0 0 0
0 0 0 0 0 0
0 0 0 0 σ(λu) σ(λ3w/2)
0 0 0 0 0 σ(λ2v)
0 0 0 0 0 0

 .

From this, we see that f takes Γ0 onto Γ0.

30



Let F be the Lie group automorphism of G that induces f . The commuta-
tivity of the diagram

G G

g g

exp exp

F

f

and the bijectivity of the vertical maps (due to G being nilpotent and simply-
connected) implies that F (Γ) = exp

(
f(exp−1(Γ))

)
= exp(f(Γ0)) = exp(Γ0) =

Γ, i.e., Γ is F -invariant. It follows that F descends to the quotient, yielding a
map F : G/Γ → G/Γ given by F (AΓ) = F (A)Γ for each A ∈ G. To see that this
map is well-defined, suppose A,B ∈ G satisfy AΓ = BΓ. Then B−1AΓ = Γ, so
B−1A ∈ Γ. Since Γ is F -invariant, it follows that F (B)−1F (A) = F (B−1A) ∈ Γ,
i.e., F (A)Γ = F (B)Γ as was desired. A similar argument shows that F is
injective, and hence bijective. The smoothness of F implies the smoothness of

F , and the smoothness of F−1 implies the smoothness of F
−1

. Therefore, F is
a diffeomorphism of G/Γ.

31



6 Main Results

6.1 Action of genus n surface group on 3-torus

We find isometries in terms of the generators of D(3, 3, 4) which induce side
pairings on a hyperbolic octagon in the hyperbolic plane. We then use Poincare’s
Theorem (Theorem 3) to conclude that this gives us a presentation of π1(Σ2) in
D(3, 3, 4). Finally, we combine these results with Theorem 4 to obtain a family
of Anosov surface group actions on T3.

Figure 5: The fundamental polygon and side pairings for the embedding
π1(Σ2) ↪→ D(3, 3, 4)

Theorem 9. There is an embedding of π1(Σ2) = ⟨g0, g1, g2, g3 | g0g1g2g3g−1
0 g−1

1 g−1
2 g−1

3 =
1⟩ into D(3, 3, 4) = ⟨x, y | x3 = y3 = (xy)4 = 1⟩ given by

g0 = (y−1xy−1)(x−1yx−1)

g1 = (xyx−1)(yxy−1)

g2 = (yxy)x−1(yxy)

g3 = (y−1x−1y)(x−1y−1x).

Proof. The isometries g0, g1, g2, and g3 induce side pairings on the hyperbolic
octagon, as pictured in figure 5. As one can see from the figure, there is only
only elliptic cycle associated to the word g0g1g2g3g

−1
0 g−1

1 g−1
2 g−1

3 . This satisfies
the elliptic cycle condition with cycle number 1. Thus, Poincare’s Theorem tells
us that ⟨g0, g1, g2, g3⟩ < D(3, 3, 4) has the presentation

⟨g0, g1, g2, g3 | g0g1g2g3g−1
0 g−1

1 g−1
2 g−1

3 = 1⟩ ∼= π1(Σ2).
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Theorem 10. There is an embedding of π1(Σ2) (using the same presentation
as in Theorem 9) into D(4, 4, 4) given by

g0 = x2yxyx

g1 = x2y2

g2 = x−1yxy

g3 = x−1y2x−1.

Remark 6. There is an embedding of D(4, 4, 4) = ⟨a, b|a4 = b4 = (ab)4 = 1⟩
into D(3, 3, 4) given by a 7→ xy, b 7→ yx. [Math stack exchange] Combined with
this remark, Theorem 9 gives an embedding of π1(Σ2) in D(3, 3, 4).

Proof. The proof technique is very similar to that for Theorem 9, so we omit it
for brevity.

By combining the above results with Theorem 5, we have the following result.

Theorem 11. There is an embedding of

π1(Σg) = ⟨ag−1, b, c, d, aca−1, ada−1, ..., ag−2ca−(g−2), ag−2da−(g−2)⟩

into D(3, 3, 4) = ⟨x, y | x3 = y3 = (xy)4 = 1⟩ given by

a = y−1xy−1xyx−1y−1

b = yxy−1xy−1x−1yxy−1

c = yxyx−1y−1x−1y−1x

d = (y−1x−1y−1)x(y−1x−1y−1).

Recall Theorem 4 from [LRT11], which gives us a family {ρt : D(3, 3, 4) ↪→
SL(3,Z)}t∈Z of Zariski dense representations of D(3, 3, 4) into SL(3,Z). We can
compose these representations with the above embeddings π1(Σg) ↪→ D(3, 3, 4)
to obtain representations

ρg,t : π1(Σg) ↪→ D(3, 3, 4) ↪→ SL(3,Z)

of π1(Σg) in SL(3,Z). Since each representation is Zariski dense and π1(Σg) is
finite-index in D(3, 3, 4), each of the representations of π1(Σg) in SL(3,Z) will
have Anosov elements. For each of these representations, we can obtain explicit
matrices which generate π1(Σg) in SL(3,Z) by substituting the matrices

x =

0 0 1
1 0 0
0 1 0

 , y =

1 2− t+ t2 3 + t2

0 −2 + 2t− t2 −1 + t− t2

0 3− 3t+ t2 (−1 + t)2


into the expressions given by Theorem 11. Thus, we obtain our main result:

Theorem 12. For g ≥ 2, we obtain an explicit family of Anosov actions of
π1(Σg) on T3, given by

a · (x+ Z3) = ρg,t(a)x+ Z3

for a ∈ π1(Σg) and x+ Z3 ∈ T3.
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6.2 Faithful Zariski dense representation of D(2, 3,∞) ∼=
PSL(2,Z) in SL(3,Z)

Slightly adapting the presentation given in [Con22], we may write

PSL(2,Z) = ⟨x, y | x2 = y3 = 1⟩

where

x =

(
0 −1
1 0

)
, y =

(
0 −1
1 1

)
.

Theorem 13. There is a 3-dimensional integral faithful Zariski dense repre-
sentation ρ of D(2, 3,∞) given by

x 7→

0 −1 2
1 −2 2
1 −1 1

 , y 7→

0 0 1
0 −1 −2
1 1 1


Before we prove this theorem, we will describe how the matrices ρ(x), ρ(y)

can be obtained.

Definition 6. We let the map Sym2 :M2×2 →M3×3 be given by

(
a b
c d

)
7→

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .

Though the map Sym2 is defined on other matrices, we will not need the general
definition here.

First, we set ρ(y) := Sym2(y). To get ρ(x), we compute Sym2(x), and then
conjugate by

Mt :=

1 t 0
0 1 t
0 0 1


where t = 1.

Remark 7. The Zariski denseness of the representation is important because
it implies that the representation has an Anosov element. Showing Zariski
denseness is useful because it does not rely on an ad hoc search through elements
in a group to find an Anosov element. That said, there is a relatively simple
matrix that is Anosov, namely

ρ(yx) =

 1 −1 1
−3 4 −4
2 −4 5


Also, Zariski dense sugroups of infinite index are called “thin” and construct-

ing thin subgroups is of independent interest.
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Proof. First, we justify why the representation ρ is faithful. While it would be
clean to argue using the Hitchin component a la Long, Reid, and Thistlethwaite
in [LRT11], we are instead using an explicit argument.

Remark 8. The construction of ρ(x), ρ(y) is motivated by the notion of a
Hitchin component, but this notion has not been defined for D(2, 3,∞). The
Hitchin component is defined for surface groups [Can23] and for fundamental
groups of compact 2 dimensional orbifolds with negative orbifold Euler char-
acteristic [Ale23]. This latter fact enables Long, Reid, and Thistlethwaite to
verify that their representation in [LRT11] is faithful.

One may hope to define a Hitchin component for D(2, 3,∞), but there
seem to be some obstacles. If the usual notion of Hitchin component made
sense for D(2, 3,∞), then the representation ρ′ given by x 7→ Sym2(x), y 7→
M−1Sym

2(x)M−1
−1 would still be faithful. However, ρ′ is not faithful since

ρ′((xy)6) = id.

We proceed with the argument.
To start, we attempt to use the ping-pong lemma to find a copy of F2 (the

free group on 2 generators) in Im ρ. Here is the form of the ping-pong lemma
we are using.

Lemma 2. [CG] Let the group Γ act on the space X. Suppose we have elements
a, b ∈ Γ and disjoint subsets A+, A−, B+, B− in X such that

a.(A+ ∪B− ∪B+) ⊆ A+

a−1.(A− ∪B− ∪B+) ⊆ A−

b.(B+ ∪A− ∪A+) ⊆ B+

b−1.(B− ∪A− ∪A+) ⊆ B−

Then ⟨a, b⟩ = F2.

We have not yet explicitly verified this, but we suspect that regionsA+, A−, B+, B−

that are ellipse-shaped when seen in RP2 should work.
We have shown that ρ is injective up to finite index, so now we resolve the

finite index issue. Denote the copy of F2 by H. Since H is index 3 in PSL(2,Z),
it suffices to ensure that the elements of order 3 are not sent to identity by ρ.
Recognizing PSL(2,Z) as a triangle group D(2, 3,∞), we see that all elements
of order 3 are conjugate to y [Zie66]. But a group element has trivial image
under a homomorphism if and only if another element conjugate to it does, and
y has nontrivial image under ρ. Therefore, ρ is faithful, as desired.

Second, we justify why ρ is Zariski dense. By a theorem of Guichard [cite
long, thist. 2k+1, Thm 3.1, also proved in Sam20 cited in Zshornack], if one can
show that a given representation of a surface group leaves no form invariant,
then its image is Zariski dense. We can check this property directly. A quadratic
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form in three variables can be written as a symmetric matrix

A =

a b c
b d e
c e f


Here e is a variable.

Let e1, e2, e3 denote the 3 standard unit basis vectors in R3. If ρ leaves a
form invariant, there must exist A so that

eT1 Ae2 = (xe1)
TA(xe2) = (ye1)

TA(ye2)

eT1 Ae3 = (xe1)
TA(xe3) = (ye1)

TA(ye3)

eT2 Ae3 = (xe2)
TA(xe3) = (ye2)

TA(ye3)

eT1 Ae2 = (y2e1)
TA(y2e2)

This system of equations in the variables a, b, c, d, e, f has only the degenerate
solution a = b = c = d = e = f = 0. So ρ cannot leave a form invariant, and is
thus Zariski dense.

6.3 Analog of Hurder’s Theorem 7.22 for rep of PSL(2,Z)
This argument has been completed but not yet written up.

6.4 Surface Group Action on Nilmanifolds

In this subsection, we will (try to) construct a surface group action on a nil-
manifold, that is not a torus. Let us denote G = π1(Σ2). We will imitate the
procedure described in [FKS11] on page 22. We summarize what we shall do
here:

1. Describe the free 2-step nilpotent Lie algebra n generated by X1, X2, X3,
Z1, Z2, and Z3.

2. Create the free 2-step nilpotent Lie group N from n.

3. Define a lattice Γ of N .

4. Define the G-action on the elements X1, X2, X3.

5. Induce the G-action in the following order:
on elements Z1, Z2, Z3, then on n, then on N , and finally on N/Γ.

6. Show that the G-action on N/Γ is Anosov.

6.4.1 Construction

Let n be the free 2-step nilpotent Lie algebra of rank 3 over R. For a more
theory-heavy approach to these Lie algebras, we refer the reader to [PCD14]

36



and [CR21]. From page 5 on [CR21], this Lie algebra can be represented in
terms of 7-by-7 matrices in the following way

n =





0 0 0 a r p 0
0 0 0 b q 0 −p
0 0 0 c 0 −q −r
0 0 0 0 c b a
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


: a, b, c, p, q, r ∈ R


, (11)

with R-vector space structure as one would expect and Lie brackets by [X,Y ] =
XY −Y X. This is generated as a vector space by X1, X2, X3, Z1, Z2, Z3, which
are matrices of the form (11) with zeros everywhere except an one at a, b, c, p, q, r,
respectively. We remark that n is not free as a Lie algebra. It can compute that
[n, n] consists of matrices pZ1 + qZ2 + rZ3 for p, q, r ∈ R. In turn, we can
then see that [n, [n, n]] = {1}, so n is indeed free and 2-step nilpotent. We note
that its commutation relations are given by [X1, X2] = Z1, [X2, X3] = Z2, and
[X1, X3] = Z3 and zero otherwise.

The exponential map of a nilpotent Lie algebra is a diffeomorphism to its
simply-connected Lie group, see Proposition 1.6.1 on [RF16]. Hence, we can
apply the exponential map on n to obtain its associated simply-connected Lie
group N . As a matrix Lie algebra, the exponential map is given by (7). One
can compute that for any X ∈ n, we have Xi = 0 for i ≥ 3. Therefore, the
simply-connected Lie group of n is given by

N =

{
I +X +

1

2
X2 : X ∈ n

}

=





1 0 0 a ac
2 + r ab

2 + p a2

2

0 1 0 b bc
2 + q b2

2
ab
2 − p

0 0 1 c c2

2
bc
2 − q ac

2 − r
0 0 0 1 c b a
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


: a, b, c, p, q, r ∈ R


(12)

It can be verified that this is a 2-step nilpotent Lie group. Indeed, the center
of N consists of matrices of the form (12) with a = b = c = 0 and p, q, r ∈ R.
Then it can be shown that the quotient N/Z(N) is abelian computationally.

Let Γ be the set of matrices of the form (12) for a, b, c ∈ Z and p, q, r ∈ {n/2 :
n ∈ Z}. In Section 6.4.2 below, we show that it is a subgroup and, moreover,
that it is a lattice.

Now let us define the π1(Σ2)-action on N/Γ. In Section 6.1, we proved that
G = π1(Σ2) has a faithful representation ρ into SL(3,Z). Hence, G has an
action on R3 by matrix multiplication: g · v 7→ ρ(g)v for g ∈ G and v ∈ R3.

Intuitively, we want to identify the generators X1, X2, and X3 of n with the
standard basis elements e1, e2, and e3 of R3, respectively. Then, we can define
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the G-action on the Xis as it acts on the standard basis. More precisely, for
g ∈ G, we can write g ·ei =

(
ai, bi, ci

)
for some ai, bi, ci ∈ R3. In turn, we define

g ·Xi := aiX1 + biX2 + ciX3. We remark that g · ei is just the i-th column of
ϕ(g).

Next, we can naturally expand our action onto Zi to preserve the Lie brackets
by defining g · Z1 := (g · X1)(g · X2) − (g · X2)(g · X1) and similarly for Z2

and Z3. Finally, we can define the G-action on arbitrary elements of n by
doing so linearly. That is, for any X ∈ n, we can write uniquely X = d1X1 +
d2X2 + d3X3 + d4Z1 + d5Z2 + d6Z3 as they form a basis for n. Then, we define
g · X := d1(g · X1) + ... + d6(g · Z3). This construction creates a well-defined
G-action on the Lie algebra n, where elements act as Lie algebra automorphism.

We can now raise this to an action on the Lie group N . Recall, every element
X ′ of N can be written as X ′ = I +X +X2/2 for some X ∈ n. Then we can
define g · X ′ := I + g · X + (g · X)2/2. This preserves the exponential map
and defines a G-action on N as a Lie group, where elements act as Lie group
automorphisms.

Let us explicitly write out this action. For g ∈ G, can write

ρ(g) =

a11 a12 a13
a21 a22 a23
a31 a32 a33


in SL(3,Z). Then for some arbitrary element X in N of the form (12), we have
that g ·X is



1 0 0 a12b + a13c + aa11 R1 P1
1
2

(a12b + a13c + aa11) 2

0 1 0 a22b + a23c + aa21 Q1
1
2

(a22b + a23c + aa21) 2 P2

0 0 1 a32b + a33c + aa31
1
2

(a32b + a33c + aa31) 2 Q2 R2
0 0 0 1 a32b + a33c + aa31 a22b + a23c + aa21 a12b + a13c + aa11
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



where

Pi =
1

2
(a12b+ a13c+ aa11) (a22b+ a23c+ aa21)

+ (−1)i−1 [(a11a22 − a12a21) p+ (a12a23 − a13a22) q + (a11a23 − a13a21) r]

Qi =
1

2
(a22b+ a23c+ aa21) (a32b+ a33c+ aa31)

+ (−1)i−1 [(a21a32 − a22a31) p+ (a22a33 − a23a32) q + (a21a33 − a23a31) r]

Ri =
1

2
(a12b+ a13c+ aa11) (a32b+ a33c+ aa31)

+ (−1)i−1 [(a11a32 − a12a31) p+ (a12a33 − a13a32) q + (a11a33 − a13a31) r]

As every coefficient aij is an integer, it is clear from above that our G-action
on N preserves the lattice Γ; that is, for every g ∈ G and X ∈ Γ, g ·X ∈ Γ. In
turn, we have an induced G-action on the nilmanifold N/Γ by defining g ·X/Γ :=
(g · X)/Γ for X/Γ ∈ N/Γ. This is well-defined as for any XN = Y N ∈ N/Γ,
we have XY −1 ∈ Γ. Since our action preserves Γ, we have g · XY −1 ∈ Γ.
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Each element act as a Lie group automorphism, so, in particular, are group
homomorphisms. Hence, (g · X)(g · Y )−1 = g · (XY −1) ∈ Γ. Therefore, (g ·
X)Γ = (g · Y )Γ. Thus, g · (XΓ) = (g · X)Γ = (g · Y )Γ = g · (Y Γ), so our
G-action on N/Γ is well-defined, where each element acts as a diffeomorphism.
We remark that we are not certain that this G-action on N/Γ is faithful. Let
g = g0g1g3 ∈ G. We give here a work-in-progress idea to show that g acts as an
Anosov diffeomorphism on N/Γ. Its representation in SL3(Z) with t = 1 is 1072 529 314

264 131 77
−441 −218 −129


As a linear map on R3, it has eigenvalues λ1 ≈ 1073.21, λ2 ≈ 0.79, λ3 ≈ 0.00179,
with eigenvectors v1, v2, v3. Moreover, it can be verified that no product of two
eigenvalues has modulus 1. By our action defined above, it acts linearly in the
Lie algebra n. It is straightforward to show that the action of g has eigenvalues
λ1, λ2, λ3, λ1λ2, λ2λ3, λ1λ3 with eigenvectors

V1 = v1,1X1 + v1,2X2 + v1,3X3, U1 = V1V2 − V2V1,

V2 = v2,1X1 + v2,2X2 + v2,3X3, U2 = V2V3 − V3V2, and

V3 = v3,1X1 + v3,2X2 + v3,3X3, U3 = V1V3 − V3V1,

respectively. Again, note that the eigenvalues are all not modulus 1; in par-
ticular, λ1, λ1λ2, λ1λ3 > 1 and λ2, λ3, λ2λ3 < 1. It can be computation-
ally verified that V1, V2, V3, U1, U2, and U3 form a basis for n. Let us define
EsI = spanR{V2, V3, U2} and EuI = spanR{V1, U1, U3}. Intuitively, they form are
the expanding and contracting subspaces of n. Note that n = TIN = EsI ⊕ EuI
and

1) g(EsI ) = EsI and g(EuI ) = EuI .

2) There exist C > 0 and λ > 1 such that

a) For all n ≥ 1 and v ∈ EsI , we have ∥gn(v)∥ ≤ (C/λn)∥v∥.
b) For all n ≥ 1 and v ∈ EuI , we have ∥g−n(v)∥ ≤ (C/λn)∥v∥.

For each A ∈ N , define EsA = d(RA)I(E
s
I ) and EuA = d(RA)I(E

u
I ), where

RA : N → N is right-multiplication by A. Since RA is a diffeomorphism of N ,
it follows that d(RA)I : n = EsI ⊕EuI → TAN is a linear isomorphism, and thus
TAN = EsA ⊕ EuA. We also define F sAΓ = dπA(E

s
A) and F

u
AΓ = dπA(E

u
A), where

π : N ↠ N/Γ is the canonical projection. The differential of π at any point is a
linear isomorphism (since Γ is discrete), so we obtain TAΓ(N/Γ) = F sAΓ ⊕ FuAΓ.

To summarize, we have constructed a G-action on N/Γ, which we strongly
believe, but have not proven, is faithful and Anosov. We have a candidate g ∈ G
that will act as an Anosov diffeomorphism on N/Γ and also candidates for the
expanding and contracting subbundles of T (N/Γ) corresponding to g.
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6.4.2 Proof that Γ is a lattice

We show that Γ, consisting of matrices of the form (12) where a, b, c ∈ Z and
p, q, r ∈ {n/2 : n ∈ Z}, is a subgroup. Let X and Y be arbitrary elements of Γ in
the forms below, where p = p′/2, q = q′/2, r = r′/2, x = x′/2, y = y′/2, z = z′/2
and a, b, c, u, v, w, p′, q′, r′, x′, y′, z′ ∈ Z. We can see that the product of X and
Y is of the form

XY =



1 0 0 a ac
2

+ r ab
2

+ p a2

2

0 1 0 b bc
2

+ q b2

2
ab
2

− p

0 0 1 c c2

2
bc
2

− q ac
2

− r

0 0 0 1 c b a
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





1 0 0 u uw
2

+ z uv
2

+ x u2

2

0 1 0 v vw
2

+ y v2

2
uv
2

− x

0 0 1 w w2

2
vw
2

− y uw
2

− z

0 0 0 1 w v u
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



=



1 0 0 a + u ac
2

+ aw + r + uw
2

+ z ab
2

+ av + p + uv
2

+ x a2

2
+ au + u2

2

0 1 0 b + v bc
2

+ bw + q + vw
2

+ y b2

2
+ bv + v2

2
ab
2

+ bu − p + uv
2

− x

0 0 1 c + w c2

2
+ cw + w2

2
bc
2

+ cv − q + vw
2

− y ac
2

+ cu − r + uw
2

− z

0 0 0 1 c + w b + v a + u
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



=



a + u 1
2
(a + u)(c + w) + aw

2
− cu

2
+ r + z 1

2
(a + u)(b + v) + 1

2
(av − bu) + p + x 1

2
(a + u)2

b + v 1
2
(b + v)(c + w) + 1

2
(bw − cv) + q + y 1

2
(b + v)2 1

2
(a + u)(b + v) + 1

2
(bu − av) − p − x

c + w 1
2
(c + w)2 1

2
(b + v)(c + w) + 1

2
(cv − bw) − q − y 1

2
(a + u)(c + w) + 1

2
(cu − aw) − r − z

1 c + w b + v a + u
0 1 0 0
0 0 1 0
0 0 0 1



=



1 0 0 a + u
(a+u)(c+w)

2
+ aw−cu+r′+z′

2
(a+u)(b+v)

2
+

av−bu+p′+x′
2

1
2
(a + u)2

0 1 0 b + v
(b+v)(c+w)

2
+

bw−cv+q′+y′
2

1
2
(b + v)2

(a+u)(b+v)
2

− av−bu+p′+x′
2

0 0 1 c + w 1
2
(c + w)2

(b+v)(c+w)
2

− bw−cv+q′+y′
2

(a+u)(c+w)
2

− aw−cu+r′+z′
2

0 0 0 1 c + w b + v a + u
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

and the inverse of X is


1 0 0 −a ac
2

− r ab
2

− p a2

2

0 1 0 −b bc
2

− q b2

2
ab
2

+ p

0 0 1 −c c2

2
bc
2

+ q ac
2

+ r

0 0 0 1 −c −b −a
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



which are both in the form of elements of Γ. Hence, Γ is a subgroup of the free
2-step nilpotent Lie group N .

Let us now prove that Γ is a lattice. We will apply Theorem 2.12 in [Mad72].
Observe that the basisXi, Zi for the Lie algebra n has structural constants which
are rational. Let n0 be the Q-vector space spanned by Xi, Zi. Consider the set
Γ0 of matrices in n of the form (11) with a, b, c ∈ Z and p, q, r ∈ (1/2)Z. It is
clear that Z3 × ((1/2)Z)3 is a lattice in R6, so interpreting n as R6, we can see
that Γ0 is a lattice in n. Observe that Γ0 is contained in n0. The rank of the
lattice Γ0 is the dimension of the R-span by Γ0, which is certainly the same as
the dimension of n, so it is of maximal rank. We see that exp(Γ0) = Γ, and
we proved earlier that it is a subgroup of N . Hence, by the discussion below
Theorem 2.12 of [Mad72], Γ is a lattice in N .
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7 Future directions

One of our future directions is determining structural stability for our π1(Σ2)-
action on T3. To do this, we would take the D(3, 3, 4) action on T3 given to
us by [LRT11] and show it is not topologically rigid. Then, we would prove
that finite index subgroups of non topologically rigid groups being rigid. This
result seems likely to be true given some empirical evidence, but we would want
to check it rigorously. Since π1(Σ2) is finite index in D(3, 3, 4), as we showed
earlier in the writeup, we would obtain as a corollary that the π1(Σ2)-action on
T3 is not topologically rigid. Since π1(Σn) is finite index in π1(Σ2), we would
also get as a corollary that the π1(Σn)-action on T3 is not topologically rigid.

Secondly, we hope to obtain a PSL(2,Z) action on T3 with Anosov element.
We think we know how to do this, but need to iron out some details. After
showing faithfulness of the representation PSL(2,Z) → SL(3,Z), we would then
argue, in a generalization of Hurder’s argument, that the induced action on T3

fails to be topologically deformation rigid.
Thirdly, we hope to construct an Anosov π1(Σ2)-action on the quotient of

the free 2-step nilpotent Lie group N on three generators by a lattice Γ ⊆ N .
Most of it seems to work, but we are still verifying (1) the faithfulness of the
action on the nilmanifold level, and (2) the existence of an Anosov element.
We believe that both of these verifications should come out positive, but we’re
still in the process of working out the details. If the arguments go through, we
may try and consider Anosov π1(Σ2)-actions on free k-step nilmanifolds on n
generators more generally, or other more broad families of nilmanifolds.
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